国产精品日韩欧美一区二区_精品久久人人做人人爽综合_国产在线第一_制服丝袜美腿一区二区_日日夜夜一区二区_中文字幕亚洲精品无码

Application analysis of water for hydrogen production and methanol reforming

2023-08-08 20:55:08Industry trends1667

As the global focus on climate change is increasing, the national carbon neutral carbon peak policy is increasingly implemented. In the process of energy transition, hydrogen, as a kind of clean energy, production, storage and transportation are increasingly difficult. Electrolyzing water for hydrogen production and methanol reforming for hydrogen production, as two common hydrogen production methods, have been widely concerned by both inside and outside the industry. This paper will compare these two hydrogen production methods, discuss their advantages and disadvantages and applicable scenarios, in order to provide reference for the energy transition.

Electrolytic water for hydrogen production

Electrolysis of water to produce hydrogen is a process of using electricity to decompose water (H2O) into hydrogen (H2) and oxygen (O2). This method has the following advantages: 

1. Clean and environmental protection: the process of water electrolytic hydrogen production does not involve any combustion reaction, and does not produce harmful gas emissions.

2. High purity hydrogen: electrolysis of water to produce hydrogen can obtain high purity hydrogen, high purity, a little purification can be directly used in fuel cell and other applications.

3. Utilization of renewable energy: Electrolysis of water can be combined with renewable energy (such as solar and wind energy) to realize sustainable utilization of energy by converting renewable energy into hydrogen for storage and utilization.

However, there are some challenges with water lysis:

 1. High energy consumption: Electrolysis of water for hydrogen production requires a lot of electricity, and the high power demand for hydrogen makes this type of hydrogen production uneconomical in areas where fossil fuels can generate electricity, and it also has the problem of high emissions.

2. Hydrogen storage and transportation: Hydrogen storage and transportation is relatively difficult, which involves high-pressure hydrogen storage or liquefied hydrogen storage technologies, which increases the complexity and cost of the system.

3. High cost: The current cost of hydrogen hydrogen electrolysis technology is relatively high, mainly from the cost of electrolysis equipment and KWH.

Methanol reforming hydrogen production

Methanol reforming to produce hydrogen is a process of catalyst methanol (CH3OH) through a chemical reaction at high temperature to produce hydrogen. This method has the following characteristics: 

1. Convenient storage and transportation: Compared with hydrogen in the gas state, liquid methanol is easier to store and transport, which reduces the cost and safety problems caused by hydrogen storage and transportation.

2. Benefit from the old refueling network facilities: the storage, transportation and methanol filling can make use of the existing liquid fuel infrastructure, without building new hydrogenation stations, which can effectively reduce the infrastructure input required for the energy transition.

3. Wide sources of raw materials and low price: methanol, as a fuel with diversified production methods, can be obtained through biomass synthesis or fossil energy, with a wide range of sources, and is one of the fuels with the largest stock in China.

However, methanol reforming for hydrogen production also faces the following challenges: 

a) carbon emission problem: If the methanol production process involves the use of fossil fuels, it has a certain amount of carbon emissions, but the carbon emission closed loop can be realized through the application of green alcohol made from renewable resources.

b) Low purity of hydrogen: the hydrogen produced by methanol reforming may contain certain impurities, which needs to be treated later to obtain high purity hydrogen. However, the online output of high purity hydrogen can be realized by carrying the palladium film purification device.

At present, liquid sunshine methanol production technology is available to cope with the carbon emission dilemma of methanol application. Liquid sunlight is the combination of hydrogen produced from solar / wind energy with captured carbon dioxide to produce methanol. The methanol generated by this route can store hydrogen in liquid form, convenient transportation, safe and efficient, and can also achieve closed loop carbon emissions, so as to achieve the goal of carbon neutrality.

For the impurities produced in the process of methanol reforming for hydrogen production, there are some common purification techniques on the market to purify hydrogen:

Pressure molar adsorption (Pressure Swing Adsorption, short) for PSA: PSA is a method of separating impurity gas based on adsorbent. In the PSA process, when hydrogen passes through the adsorbent bed layer, the adsorbent selectively adsorbs other gas components, such as methane and carbon monoxide, so as to realize the purification of hydrogen.

Membrane separation (Membrane Separation): Membrane separation is a process of separating gases by molecular size or solubility using a specific semi-permeable membrane. In the purification process of hydrogen, choosing the appropriate membrane material and operating conditions can separate the impurity gas from the hydrogen.

Normal temperature adsorption (Temperature Swing Adsorption, TSA): TSA uses the adsorption selectivity of different component gas at room temperature to achieve separation. The impurity gas can be separated from the hydrogen by regulating the adsorption rate and affinity of the different gases on the adsorbents.

Usually, methanol hydrogen produces hydrogen in the form of large chemical industry, and through chemical reforming catalytic hydrogen production enters PSA pressure adsorption system for purification, which has certain regional limitations. The hydrogen produced also needs to be stored and transported in the form of high pressure or liquefaction, and the cost problem of storage and transportation end still cannot be solved.

The methanol online hydrogen production system independently developed by Guangdong Nengchuang Technology can effectively solve the problem of hydrogen storage and transportation in methanol hydrogen production in large chemical industry. Meanol online hydrogen production system is to integrate the methanol reforming module and palladium film purification module, to replace the large chemical industry with small equipment, high structural strength, can realize methanol online hydrogen production in projects that need to move or usable small footprint, that is, production and use. Among them, the palladium film purification technology developed by the company can effectively purify the hydrogen containing impurities to the standard purity of hydrogen for fuel cell in a small volume. Based on the current methanol futures price of 2200-2500 yuan, the cost of hydrogen production per kilogram is only 16-18 yuan. At the same time, methanol is also the optimal liquid carrier of hydrogen. Through the online hydrogen production of methanol, the cost of hydrogen at the storage and transportation end can be greatly reduced, so as to reduce the cost of hydrogen for end users.

In conclusion, hydrogen electrolysis and methanol reforming are potential hydrogen production methods. Hydrogen production by electrolysis of water has the advantages of clean environmental protection, high purity hydrogen and renewable energy utilization, which is suitable for areas with abundant renewable energy and stable power supply. Methanol reforming hydrogen production has the advantages of convenient storage and transportation, utilization of infrastructure and wide range of application, and is suitable for promotion and application in areas with relatively developed liquid fuel infrastructure. In practical application, the most appropriate hydrogen production method is selected according to regional renewable energy resources, energy demand, carbon emission reduction targets and application scenarios, so as to promote energy transformation and achieve the goal of carbon neutrality.

主站蜘蛛池模板: 久久欧美_亚洲精品伦理_欧美一a_国产精品一区二区亚瑟不卡_俺也去色官网在线播放_91免费观看视频网站_罚女仆夹震蛋器憋尿虐乳网站_秋霞影院亚洲国产中文精品 | 人妻丰满熟妇av无码区hd_欧美另类一二三四_国产激情二区_欧美日韩一区二区在线播放_被公侵犯人妻一区二区三区_AB无码精品一区二区三区人妖_亚洲国产精品成人AV在线_97久久人人超碰国产精品 | 日本免费黄色_黄色网址在线免费看_传媒精选麻豆_久久久久久久99精品欧美产片_美女黄网站18禁免费看_精品免费国产一区二区_中国少妇初尝黑人巨高清_欧美伊人久久大香线蕉在观 | 亚州欧美在线_亚洲第一av在线播放_99er在线观看_日本欧美日韩_国产强被迫伦姧在线观看无码_啊灬啊灬啊灬啊高潮了_午夜看片网址_免费一级毛毛片 | 中文字幕日韩精品成人免费区二区_午夜影院免费体验区_99在线视频播放_69堂视频_天天插伊人_国产sm免费视频专区_国产午夜福利精品久久2021_亚洲综合欧美综合 | 亚洲国产初高中生女AV_久久bt_国产在线91精品入口首页_免费日韩一级片_国产乱淫av片免费观看_99久久精品一区二区_色伊人色_女性高爱潮视频 | 欧美国产精品一区二区_日韩综合精品视频_欧美老熟妇XOXOXOXO_在线播放一区二区三区_一精品久久久_亚洲精品久久久一区二区三区_夜夜操com_wwwxx欧美 特黄A片女人亚洲一区小说_尻逼久久_美国豪放女大兵在线观看_精品国产91久久久_成人免费在线视频观看_国产精品美女久久久久av爽金牛_亚洲成人tv_久久久久久中文字幕 | 波萝蜜A毛黄AAA片_国产高清在线精品_久久久视频免费观看_欧美一区二区三区性视频_免费无码成人av在线播_91av国产在线_亚洲第一AAAAA片_米奇777在线观看 | 日韩欧美中_A级做爰片_特级无码毛片免费视频播放_国产精品多人P群无码_亚洲XXXX做受欧美_久久人人视频_色爽女少妇_久久精品中文字幕一区二区 | 男人j桶进女人p无遮挡免费的视频_亚洲kkk4444在线观看_极品少妇被啪到呻吟喷水_国产精品臀控福利在线观看_97视频国产自在自线2020_视频h在线_国产成人午夜福利r在线观看观看_午夜福利啪啪片 | 夜夜艹天天干_亚洲情区_超碰在线官网_欧美人与禽2O2O性论交_欧美精品日日鲁夜夜添_成年免费无码动漫AV片在线观看_日本老肥婆BBBWBBBWZR_成人AV综合在线网站 | 国产视频2区_传媒大片免费在线观看网站_久久久不卡_91av在线免费看_亚洲av永久无码精品网站mmd_黑色正能量最新入库_一本色综合久久_97色视频在线 | 亚洲国产久_人人插人人舔_日韩无线码精品中文字幕视频手机_麻豆做爰免费观看_亚洲无码动漫一区_亚洲精品主播自拍_成人免费网站_伦理2男一女3p黑人 | av成人免费在线_色在线视频网站_国产ts视频_国内xxxx乱子另类_久久综合草_无码欧美熟妇人妻影院_九九热久久99国产盗摄蜜臀_色资源av | 亚洲人成色4444在线观看_美女视频黄又黄又免费高清_西游性淫片a级在线观看_欧美成a人片在线观看久_特级黄色毛片视频片子_青草久久久国产线免观_国产精品999在线观看_色欧美色美色一区二区在线 | 伊人久久中文字幕_性视频毛片_精品91久久久久_四色网站_美女久久99_国产视频在线免费观看_日本特级一级片_无码真人肉片在线观看 | 久久精品2_性色一区二区三区_久草热这里有精品6_天天爽夜夜爽夜夜爽_91麻豆国产福利精品_99精品视频精品精品视频_一级大片免费_久久99精品国产麻豆不卡 | 久久99精品久久久久久秒播放器_福利社区一区二区_国产精品一区二区av交换_成年人免费视频_欧美日韩亚洲在线_jj男色网_热re99久久精品国产99热_国产欧美另类久久久精品 | 日本舌吻交缠舌头视频网站_国产黄免费_国产农村妇女三级全黄91_欧美级特黄AAAAAA片_av一级久久_国产呦在线沙发_尤物一区_欧美视频一区 99久久精品国语对白_国产小u女在线未发育_runaway动漫免费官网_国产精品一区二区久久久久_日韩国产高清视频_91操bb_亚洲一区二区三区影院_国产在线精品无码AV不卡顿 | 四虎国产精品亚洲永久免费_日本真人做人爱一区二区三区_午夜片少妇无码区在线观看_99热久久精品免费精品_免费国产裸体美女视频全黄_素人一区二区三区_想看一级毛片_永久免费av无码网站yy | 国产精品人成视频免费播放_亚洲欧美一区二区三区_精品中国亚洲_强奷人妻日本中文字幕_免费国产一级_亚洲а∨天堂久久精品喷水_热re91久久精品国99热蜜臀_亚洲成人精品网 | 国产AV仑乱内谢_国产精品一区二区三区在线免费观看_久久精品天天中文字幕人妻_成人毛片18女人_四虎影院最新网址_欧美成人精品一区二区综合_国语免费一级毛片私人_亚洲国产成人精品女人久久 | 国产人妻无码区免费九色_开心色av_av在线天_成人av1234567_国内精品伊人久久久久影院麻豆_国产成人精品人人_日韩在线黄色片_年轻的秘书在线 | 色窝窝51精品国产人妻消防_免费无码成人片在线观看软件_麻豆porn_午夜理论片yy44880影院_免费无毒的黄色_国产日韩一区二区三免费高清_日本1区2区_亚洲自拍99 | 欧美精品欧美精品系列c_国产a一级毛片_少妇人妻系列无码专视频区_韩日av网站_色婷婷久久久久swag精品_JULIA无码中文字幕一区_日日骚视频_能在线看的av | 东京热无码人妻一区二区av_久久久国产免费_色欧美片视频在线观看_极品少妇被猛得白浆直流草莓视频_最新永久免费AV无码网站_JIZZ国产丝袜18老师女人生产_亚洲色大18成人网站WWW在线播放_偷拍自拍第二页 | 久久精品中文字幕第一页_亚洲精品乱_狠狠av_日韩精品亚洲人成在线观看_五月天激情在线麻豆_日韩成人在线观看视频_小鸟酱福利视频_无码专区中文字幕无码 | 欧美日韩一区在线播放_亚洲高清人人爽夜夜爽AV毛片_亚洲成在人线aⅴ免费毛片_亚洲区一区二区_欧美破苞系列二十三_国产初高中生视频在线观看_午夜性又黄又爽免费看尤物_国产精品亚洲第一区在线暖暖韩国 | 一区二区日韩视频_古装激情偷乱人伦视频_日本免费一二三区_日本三级动作片_成人午夜福利视频后入_国产超污精品A级毛片_久久不色_中国精品久久精品三级 | 欧美特级黄色片_字幕网91_av亚洲一区_欧美一区二区性_天天躁日日躁AAAAXXXX_亚洲欧美黑人猛交群_一级不卡免费视频_日本一本一区 黄色特级片_国产乱人伦精品一区二区_毛片一区二区三区_一级做a爱片久久_亚洲精品乱码久久久久久按摩观_久久久久久久国产精品影院_caoporn国产_全球AV集中精品导航福利 | 5060午夜_中文字幕午夜精品一区二区三区_精品亚洲国产成人av不卡_日本三级bd高清_成人三级影院_91嫩草入口_а中文在线天堂_伊人无码高清 | 亚洲日韩久久精品无码蜜桃臀_日韩v在线_欧美女优在线观看_神马香蕉久久_阳茎伸入女人阳道视频免费_久久国产精品二国产精品_少妇88久久中文字幕_黄色av片三级三级三级免费看 | 亚洲久久视频_欧美国产日本_国产成人无码精品久久久免费_久久精品视频网站_边做边流奶水的人妻_国内网站成视频在线观看_色网免费观看_67194熟妇在线直接进入 | 女同免费观看码_法国精品熟妇多毛bhd_国产精品伊人影院_国产精品∧V在线观看_日本肥老太肥506070_国产精品久久久久久婷婷_谁有毛片_四虎影视免费观看 | 香蕉久久一区二区不卡无毒影院_成全免费高清观看_看片免费黄在线观看入口_亚洲日本aⅴ片在线观看香蕉_国产精品嫩草影院88av_一级片免费无码_超碰97av在线_大香焦久久 | 夜夜揉揉日日人人视频_秋霞成人午夜伦在线观看_jizz在线观看免费_91大神精品在线_国产精品精品国产_成年肉动漫在线观看无码中文_老熟女重囗味HDXX70星空_久久久久久久久影院 | JAPANESEHD熟女熟妇伦_日韩激情一区二区_综合另类_黑人刚破完处就三P_国产区视频在线播放_日本黄色片视频_日韩一区二区三区影院_男人进去女人爽免费视频" | 成人高清视频免费观看_国产精品VA在线观看无码_写真福利视频_精品国产经典三级在线看_密色av_国产欧美一区综合_中文字幕一二三区有限公司_久久久久97国产精 | 18勿入网站免费永久_91色综合网_国产欧美在_女人体1963毛片a级_久久久老熟女一区二区三区_亚洲依依成人亚洲社区_激情爱爱网站_中国XXXX真实偷拍 | 日韩1区在线_久久精品最新_麻豆乱码国产二区三区使用方法_狠狠天天_wwwxxxx中国_国产又猛又黄又爽三男一女_欧美变态另类ZOZO_亚洲成A人片在线观看国产 | 国产成人无码av一区二区在线观看_91久久爽久久爽爽久久片_天天天天天干_97超超碰_精品无码久久久久国产_欧美不卡中文字幕一区二区_国产伦精品一区二区三区妓女_日本高清免费视频 |